Research: Herschel Pangborn

The Pangborn Advanced Controls Lab studies the science of automated decision-making in systems, optimizing the design and real-time operation (i.e., control) of systems with high societal relevance.

Our research enables new paradigms in the performance, safety, efficiency, and sustainability of energy systems in vehicles and buildings. Key to achieving this objective is our systems-level approach to control and design, which enables coordination across multiple components, timescales, and physical domains. The systems we study include electrified aircraft, hybrid automobiles, and thermal management systems in buildings and vehicles.

Our systems-based approach intersects three areas:

Controls and Optimization

Modern energy systems are often too complex for decision-making to be governed by a single, centralized controller. We develop hierarchical and distributed control frameworks that employ a network of communicating controllers to coordinate decision-making across multiple components, timescales, and physical domains. Predictive control methods allow these frameworks to take proactive action in optimizing system behavior. We also specialize in the control of systems that exhibit switched dynamic behavior and/or have actuators with discrete modes of operation. Contributions to control theory establish guarantees on performance and safety, while closed-loop experimental application bridges the theory-practice gap. We also investigate systems-level design approaches to optimize architecture selection and component sizing for energy systems.

Dynamic Modeling

We employ a combination of physics-based and data-driven methods to capture energy system dynamics across a range of timescales and physical domains. In modeling energy systems, we focus on capturing the most salient dynamic behaviors while retaining a level of computational simplicity that allows models to be leveraged for system-level design and real-time feedback control.

Thermal and Electro-Thermal Systems

The electrification of energy systems is a technological megatrend that has transformed buildings, aircraft, automobiles, and naval ships. With electrification, the ability to manage thermal and electro-thermal interactions within energy systems has increasingly become the limiting factor of their capabilities. The modeling, design, and control approaches developed by our lab enable increased power/energy density and decreased operating costs, while bringing new paradigms in performance, safety, efficiency, and sustainability.

More information can be found at: paclab.info